Холодильник, блузка, слуховой аппарат. Что и как изобретал Альберт Эйнштейн. Биография и открытия альберта эйнштейна Эйнштейн изобретения

Альберт Эйнштейн – человек XX века по версии журнала «Time». Его работыперевернули развитие фундаментальной физики и наш взгляд на мир. Но одной теорией его гений обойтись не смог – Эйнштейн также является автором многих патентов на изобретения в различных странах. И даже дизайна блузки.

Человек столетия

В конце двадцатого века журнал «Time» предложил выдающимся политикам, общественным активистам и деятелям искусства выбрать человека столетия. По итогам был составлен список из ста самых влиятельных людей, и возглавил его Альберт Эйнштейн.

Удивляться не приходится: двадцатый век общепризнанно стал веком науки, и вклад Эйнштейна в нее трудно переоценить. Он изменил наш взгляд на пространство и время, вещество, энергию, создал новую теорию гравитацию. Немногим удалось, завоевав популярность прижизненно, сохранять ее в течении стольких лет и в настоящее время.

«Драмкружок, кружок по фото...»

Но удивительно незаметно для широкой общественности развивалась и другая сторона жизни Альберта Эйнштейна. Будучи великим физиком-теоретиком, он также был изобретателем и получил более пятидесяти патентов в разных странах.

Основную часть времени Эйнштейн, конечно, посвящал теоретической физике. Но в свободное время он работал над решением математических проблем в других областях или практических задач. Среди его главных работ можно выделить следующие: охлаждающую систему, разработанную вместе с Лео Сзилардом, систему воспроизведения звука в соавторстве с Рудольфом Голдшмидтом и автоматическую камеру с Густавом Баки. Что еще более удивительно, Эйнштейн является обладателем патента на дизайн блузы.

Помимо охлаждающей системы, остальные патенты Эйнштейна не получили широкого распространения и представляют собой исключительно историческую значимость. Но, обо всем по порядку.


Схема холодильника Эйнштейна-Сзиларда.

Безопасный холодильник

Первые патента Эйнштейна были посвящены охлаждающим системам или простыми словами, холодильникам. С 1926 по 1933 год он работал над этой проблемой совместно с Лео Сзилардом, выдающимся физиком венгерского происхождения, участником Манхеттенского проекта.

Базовый принцип работы холодильника прост: некоторая охлаждающая жидкость циркулирует вокруг объекта и забирает у него тепло - таким образом происходит охлаждение. Чаще всего в качестве охлаждающей жидкости выступает сжиженный газ. Выполнив свою функцию, газ нагревается и переводится в большую нишу, где, расширяясь, снова охлаждается. Затем охладитель сжижается компрессором и процесс начинается заново.

Во времена Эйнштейна в качестве охлаждающего газа использовались токсичные диоксид серы, метилхлорид и аммиак. Случаи отравления и даже смерти целых семей были нередки. Эйнштейн воспринял одну из таких трагедий близко к сердцу и задался целю создать холодильник, в котором не было бы движущихся и токсичных частей, убрав компрессор и токсичные газы.


Альберт Эйнштейн и Лео Сзилард.

Электромагнитное сердце

Основой холодильника Эйнштейна и Сзиларда стал электромагнитный насос, без прокладок и затворок, которые могут дать течь или сломаться: вместо этого они предложили концепцию человеческого сердца, которое качает кровь по организму за счет сокращения и растяжения мышц. Сплав калия и натрия под действием переменного магнитного поля совершает периодические движения, сжижая и расширяя охлаждающий газ.

Сзилард и Эйнштейн подали более 45 заявок на патенты в шести разных странах, но распространения их охлаждающая система не получила. Прототип оказался очень шумным, а последовавшая в 30-х годах Великая депрессия в целом подпортила благосостояние многих производителей. К тому же, с внедрением нетоксичного фреона отпала необходимость повышать безопасность холодильников. Изобретение Эйнштейна и Сзиларда, однако, позже нашло свое применение в 50-х годах, в технологии ядерных реакторов-размножителей.


Патент Альберта Эйнштейна и Рудольфа Голдшмидта.

Акустический слуховой аппарат

В 1922 году к Эйнштейну за экспертным мнением по поводу одной из своих разработок обратился Рудольф Голдшмидт, немецкий инженер и изобретатель. С тех пор они находились в постоянном контакте и в 1934 году запатентовали «Аппарат электромагнитного воспроизведения звука».

История этого изобретения такова: знакомая Эйнштейна, выдающаяся певица Ольга Эйснер стала терять слух, что является настоящей трагедией для любого музыканта. Эйнштейн попросил помощи Голдшмидта, чтобы создать для нее новый тип звукового аппарата.

В результате Эйнштейн и Голдшмидт запатентовали изобретение со следующим описанием: «Устройство, специально разработанное для воспроизведения звука, в котором изменения электрического тока создают движение намагниченного тела вследствие магнитострикции». Магнитострикция – явление, возникающее, например, если плотно обвить железный сердечник проводом и пустить сквозь него ток. Провод создает магнитное поле, которое, в свою очередь, меняет форму сердечника. Вибрации сердечника будут соответствовать изменению силы тока.

Предполагалось передавать вибрации сердечника через некоторого рода мембрану, которая прикреплялась бы к черепу – создать электро-акустический слуховой прибор. К сожалению, дальнейшего развития изобретение Эйнштейна-Голдшмидта не получило, а впоследствии получили развитие электронные слуховые аппараты, которые способны во много раз усиливать звуковые волны. Необходимость в электро-акустических технологиях отпала.

Схема камеры Эйнштейна-Баки.

Первая самонастраивающаяся камера

Вместе со своим давним другом Густавом Питером Баки Эйнштейн изобрел самонастраивающуюся камеру. Это произошло за несколько лет до того, как Кодак представил миру Super Six-20, известную как первая автоматическая камера - хотя стоит отметить, что Кодак и Эйнштейн-Баки использовали разные принципы работы. Камера стала изобретением, в котором Эйнштейн впервые использовал собственные физические наработки, а именно открытое им явление фотоэффекта, за которое он и был удостоен Нобелевской премии по физике в 1921 году.

Камера была запатентована в 1936 году, ее главным отличием была «адаптация к количеству света, попадающему на фотопластинку, в зависимости от освещенности и фотографируемого объекта». В ней свет попадал на фотоэлектрическую ячейку, которая вырабатывает электрической ток под действием света. При этом между ячейкой и основной линзой находился барабан с различными затемняющими пластинами. Количество попадающего на фотоячейку света определяло угол, под которым должен повернуться барабан, и какой именно фильтр нужен в данных условиях.

Блуза Эйнштейна.

И даже дизайнер?

Удивительно, но факт – Эйнштейна интересовал и дизайн одежды. В 1935 году Густав Баки в своем письме пожаловался ему, что Эмиль Майер, поверенный по делам Эйнштейна и Баки, подал заявку на патентование непромокаемой одежды без их ведома.

Возможно, эта заявка в итоге была аннулирована. Однако, как показывают записи, в 1936 году в США Эйнштейн получил патент на дизайн блузы. Модель «Альберт Эйнштейн» представлена на рисунке, и главными ее отличительными чертами были заявлены боковые прорези, также служившие рукавами, и центральная часть, идущая от воротничка к талии. К сожалению, доподлинно неизвестно, сколько экземпляров было пошито и кто красовался в блузе от именитого физика.

Открытие теории относительности было окружено серьезными, но малоизвестными обвинениями Эйнштейна в плагиате, Дэвида Гильберта и его сторонников. Все началось с того, что Гильберт заявил о том, что первым пришел к общей теории относительности и что его работу скопировал Эйнштейн без должных ссылок. Эйнштейн опроверг обвинения, заявив, что именно Гильберт скопировал несколько более ранних работ Эйнштейна.

Сначала большинство людей решило, что оба ученых независимо друг от друга работали над общей теорией относительности и что Гильберт подал статью с правильными уравнениями за пять дней до Эйнштейна. Тем не менее после того, как историки решили разобраться в вопросе, они обнаружили, что именно Гильберт позаимствовал несколько идей у Эйнштейна, не упомянув его имени.

Судя по всему, доказательствам, изначально представленным Гильбертом, не хватало важного шага, без которого они были неправильными. К тому времени, когда работу Гильберта опубликовали, он уже исправил ошибку. И противопоставил свою работу эйнштейновской, которая была опубликована намного раньше.

Он отлично учился в средней школе


Эйнштейн был отличным учеником средней школы. Более того, он был настолько хорош в математике, что изучал математический анализ в возрасте 12 лет, на три года раньше обычного. В возрасте 15 лет Эйнштейн написал продвинутое эссе, которое стало основой для его дальнейшей работы в теории относительности.

Миф о том, что Эйнштейн ужасно учился в школе, родился из-за различия в системах маркировки между немецкими и швейцарскими школами. Когда Эйнштейн сменил немецкую школу на школу в кантоне Ааргау в Швейцарии, система классификации - от 1 до 6 (как от 5 до 1 у нас) - была перевернутой. Оценка 6, обозначавшая низший балл, стала высшей, а единица, обозначавшая высшую оценку, стала низшим баллом.

Впрочем, Эйнштейн завалил вступительный экзамен в колледж. Прежде чем попасть в Ааргау, откуда и пошел миф о плохой учебе, он пытался поступить в Федеральную политехническую школу в Швейцарии. И хотя экзамены по математике и физике он сдал замечательно, по некоторым ненаучным предметам, особенно по французскому языку, он набрал мало баллов.

Его изобретения


В течение жизни Эйнштейна ему приписывались некоторые изобретения, включая холодильник Эйнштейн, который он изобрел вместе со своим другом и коллегой физиком Лео Сцилардом. В отличие от обычных холодильников, холодильник Эйнштейна не использовал электричество. Он охлаждал пищу в процессе абсорбции, использующего изменения давления между газами и жидкостями для снижения температуры в пищевой камере.

Эйнштейн захотел придумать свой холодильник после того, как услышал о гибели немецкой семьи, отравившейся токсичными газами, утекшими из обычного холодильника. В 1800-х годах механические компрессоры в холодильниках могли иметь дефектные пломбы, через которые утекали ядовитые газы, двуокись серы и хлористый метил.

Эйнштейн также изобрел насос и блузку. Блуза имела два набора кнопок, пришитых параллельно друг другу. Один набор кнопок подошел бы худому человеку, а другой подошел бы человеку потяжелее. Худенькая персона, которая купила бы блузку Эйнштейна, могла прибавить в весе и просто перейти на другой набор кнопок. Так же, как и пышный человек, потерявший в весе. Экономия.

Лазейка, которая могла сделать США диктатором


Курт Гедель был среди ученых, бежавших в США с подконтрольных нацистам территорий во время Второй мировой войны. В отличие от Эйнштейна, Гедель с трудом получил американское гражданство. Когда его, наконец, пригласили на собеседование по поводу гражданства, он должен был привести двух человек с собой, которые могли бы поручиться за его поведение. Гедель взял друзей, Оскара Моргенштерна и Эйнштейна.

Гедель много читал, готовясь к собеседованию, которое совершенно случайно проводил судья Филипп Форман, друг Эйнштейна. Когда Форман выразил надежду на то, что США не были и никогда не станут диктаторским государством, Гедель возразил, сказав, что США вполне может обзавестись диктатурой из-за лазейки в Конституции.

Он собирался объяснить, но Эйнштейн перебил Геделя, поскольку его ответ мог лишить его шансов на получение гражданства. Судья Форман быстро продолжил интервью, и Гедель стал гражданином США.

Этот инцидент стал известен лишь благодаря записи Моргенштерна в дневнике. Тем не менее в ней не сказано, какой была лазейка или как США могли стать страной с диктатурой. Никто не знает, какая часть Конституции содержит очевидную лазейку, но ходят предположения, что Гедель думал о Статье 5, которая позволяет вносить изменения в Конституцию. Вполне возможно, что некоторые поправки могли юридически уничтожить ее.


ФБР следило за Эйнштейном с 1933 года, когда он приехал в США, до его смерти в 1955 году. Бюро прослушивало его телефон, перехватывало письмо, обыскивало его мусор в поисках свидетельств, которые могли бы указать на подозрительную группу или активность, включая шпионство на Советский Союз. Однажды ФБР даже объединилось со службой иммиграции в поисках причины для депортации ученого. В Эйнштейне подозревали антиправительственного радикала или коммуниста ввиду его политических взглядов и связей с пацифистскими и правозащитными группами.

До приезда Эйнштейна в США Женская патриотическая корпорация направила 16-страничное письмо в Госдепартамент, протестуя против въезда ученого в страну. Она утверждала, что даже Иосиф Сталин был меньше связан с группами коммунистов, чем Эйнштейн.

В результате Госдепартамент тщательно допросил Эйнштейна на тему его политических убеждений до выдачи визы. Разозлившись, Эйнштейн сердите отвечал своим интервьюерам, что американский народ умолял его приехать в США и он не потерпит отношения к себе как к подозреваемому. Уже получив гражданство, Эйнштейн оставался в США, даже зная, что находится под наблюдением. Однажды он даже сказал польскому послу, что их разговор тайно записывался.

Он пожалел о своей причастности к атомной бомбе


Эйнштейн никогда не принимал участие в , правительственной программе США, в рамках которой были созданы первые ядерные бомбы во время Второй мировой войны. Даже если бы он захотел участвовать, ему бы отказали из соображений безопасности. Ученым, принимавшим участие в проекте, также запрещалось с ним встречаться.

Единственным вкладом Эйнштейна стало подписание письма с просьбой к президенту Рузвельту о разработке атомной бомбы. Вместе с физиком Лео Сцилардом Эйнштейн написал письмо после того, как узнал, что немецкие ученые расщепили атом урана.

Хотя Эйнштейн и знал о чрезвычайно разрушительной силе атомной бомбы, он ввязался в первую очередь потому, что боялся, что немцы первыми сделают бомбу. Но впоследствии он пожалел о том, что написал и подписал письмо. Услышав, что США сбросили первую атомную бомбу на Хиросиму, он ответил: «Горе мне». Позже Эйнштейн признался, что не подписал бы письмо, если бы знал, что немцы никогда не сделают бомбу.


Рожденный в 1910 году, Эдуард был вторым сыном Эйнштейна и его жены Милевы Марич. Эдуард (по прозвищу «Тете» или «Тетель») в детстве часто болел и получил диагноз шизофреника в возрасте 20 лет. Милева, которая развелась с Эйнштейном в 1919 году, сначала заботилась об Эдуарде, но позже поместила его в психиатрическую лечебницу.

Эйнштейн не был удивлен, когда Тете поставили такой диагноз. Сестра Милевы страдала от шизофрении и Тете часто проявлял поведение, которое указывало на болезнь. Эйнштейн бежал из Германии в США через год после того, как Тете попал в больницу. Хотя Эйнштейн часто навещал своих сыновей, когда все они жили в Европе, попав в Америку, он ограничился одними письмами.

Письма Эйнштейна к Эдуарду были редкими, но очень душевными. В одном письме Эйнштейн сравнил людей с морем, отметив, что они могут быть «приветливыми и дружелюбными» или «бурными и сложными». Он добавил, что хотел бы увидеть своего сына грядущей весной. К сожалению, разразилась Вторая мировая война, и Эйнштейн больше никогда не увидел Тете.

После смерти Милевы в 1948 году, Тете оставался в госпитале еще девять лет. Восемь лет он провел с приемной семьей, но вернулся в больницу, когда его приемная мать заболела. Умер Тете в 1965 году.

Эйнштейн был заядлым курильщиком

Больше всего на свете Эйнштейн любил свою скрипку и трубку. Будучи заядлым курильщиком, он однажды сказал, что считает курение необходимым для спокойствия и «объективного суждения» в людях. Когда его врач прописал ему избавление от вредной привычки, Эйнштейн засунул в рот трубку и закурил. Иногда он также поднимал окурки на улицах, чтобы раскурить в своей трубке.

Эйнштейн получил пожизненное членство в Монреальском клубе курильщиков трубок. Однажды он упал за борт во время поездки на лодке, но сумел спасти заветную трубку от воды. Помимо множества рукописей и писем, трубка остается одной из немногих личных вещей Эйнштейна, которые у нас есть.

Он любил женщин


Когда Эйнштейн не работал на E = mc^2, не курил, не писал письма и не проектировал блузку, он развлекал себя женщинами. Его письма показывают, как сильно он любил женщин, или, по словам самого Эйнштейна, как сильно женщины любили его.

В интервью NBC News, Ханох Гутфройнд, председатель Всемирной выставки Альберта Эйнштейна в Еврейском университете, описал брак Эйнштейна с его второй женой Эльзой как «брак по расчету». Гутфройнд также считает, что 3500 страниц писем Эйнштейна, изданных в 2006 году, свидетельствуют о том, что Эйнштейн был не таким уж плохим отцом и мужем, как считалось изначально.

Признав, что не может оставаться с одной женщиной, Эйнштейн был откровенен с Эльзой о своих внебрачных связях. Он часто писал ей в письмах о том, что вокруг него собирается множество женщин, что он сам охарактеризовал как нежелательное внимание. Будучи в браке, он сменил по меньшей мере шесть подружек, включая Эстеллу, Этель, Тони и Маргариту.

В письме своей падчерице Марго от 1931 года, Эйнштейн писал: «Это правда, что М. последовала за мной в Англию, и ее преследование выходит из-под контроля. Из всех дам я на самом деле привязан только к г-же Л., абсолютно безвредной и порядочной».

Крупнейшая ошибка Эйнштейна


Эйнштейн мог быть блестящим ученым, но он был далеко не идеальным. На самом деле он сделал по меньшей мере семь ошибок в различных доказательствах E = mc^2. Тем не менее в 1917 году он признал свой «самый большой промах». Он добавил космологическую постоянную - представленную греческой буквой лямбда - в уравнения общей теории относительности. Лямбда представляла силу, противодействующую притяжению гравитации. Эйнштейн добавил лямбду, поскольку большинство ученых считало, что Вселенная была стабильна в то время.

Позже Эйнштейн убрал постоянную, когда обнаружил, что его предыдущие уравнения были корректны и Вселенная на самом деле расширяется. Но в 2010 году ученые выяснили, что уравнения с лямбдой вполне могут оказаться верными. Лямбда может объяснять «темную энергию», теоретическую силу, которая противостоит гравитации и .

11 ноября 1930 года физики Альберт Эйнштейн и Лео Силард получили патент на холодильник собственной конструкции. Устройство, к сожалению, не получило распространения и не было запущено в производство. Это устройство было не единственным изобретением Альберта Эйнштейна. Мы решили рассказать о пяти известных разработках прославленного физика.

Холодильник Эйнштейна

Холодильник Эйнштейна представлял собой абсорбционный холодильник. Разрабатывать устройство физики Альберт Эйнштейн и Лео Силард начали в 1926 году. Запатентовано оно было 11 ноября 1930 года. К идее создать новый холодильник физиков подтолкнул случай, о котором они прочли в газете. В заметке говорилось об инциденте, произошедшем в одной берлинской семье. Члены этой семьи получили отравление из-за утечки диоксида серы из холодильника.

Предложенный Эйнштейном и Силардом холодильник не имел движущихся частей, в нем использовался относительно безопасный спирт.

Несмотря на то что Эйнштейн получил патент на свое изобретение, его модель холодильника не была запущена в производство. Права на патент купила фирма «Электролюкс» в 1930 году. Так как холодильники, использующие компрессор и газ фреон, были более эффективными, они вытеснили холодильник Эйнштейна. Единственный экземпляр бесследно исчез, осталось лишь несколько его фотографий.

В 2008 году группа ученых из Оксфордского университета в течение трех лет занималась созданием и развитием прототипа холодильника Эйнштейна.

Магнитострикционный громкоговоритель

Рудольф Гольдшмидт и Альберт Эйнштейн 10 января 1934 года получили патент на магнитострикционный громкоговоритель. Название патента звучало как «устройство, в частности, для звуковоспроизводящей системы, в котором изменения электрического тока вследствие магнитострикции вызывают движение магнитного тела».

Предполагалось, что этот аппарат будет служить в первую очередь в качестве слухового аппарата. Общими друзьями Эйнштейна и Гольдшмидта были супруги Ольга и Бруно Айзнер, певица и пианист. Ольга Айзнер плохо слышала. Гольдшмидт и Эйнштейн взялись ей помочь. Был ли создан прототип подобного громкоговорителя, неизвестно.

27 октября 1936 года Букки и Эйнштейн получили патент на фотокамеру, автоматически подстраивающуюся под уровень освещенности. Такая фотокамера, помимо объектива, имела еще одно отверстие, через которое свет попадал на фотоэлемент. При попадании фотонов на фотоэлемент вырабатывался электрический ток, который поворачивал находящийся между линзами объектива кольцевой сегмент. Поворот сегмента тем больше, а, следовательно, затемнение объектива тем сильнее, чем ярче освещен объект.

Эйнштейн принимал участие в разработке гирокомпаса. Известно, что он сотрудничал с Аншютцем в разработке устройства. Эйнштейн, в частности, придумал, как осуществить центровку гиросферы в вертикальном и горизонтальном направлениях, предложив так называемую схему индукционной подвески.

Немецко-швейцарско-американский физик Альберт Эйнштейн родился в Ульме, средневековом городе королевства Вюртемберг (ныне земля Баден-Вюртенберг в Германии), в семье Германа Эйнштейна и Паулины Эйнштейн, урожденной Кох. Вырос он в Мюнхене, где у его отца и дяди был небольшой электрохимический завод. Эйнштейн был тихим, рассеянным мальчиком, который питал склонность к математике, но терпеть не мог школу с ее механической зубрежкой и казарменной дисциплиной. В унылые годы, проведенные в мюнхенской гимназии Луитпольда, Эйнштейн самостоятельно читал книги по философии, математике, научно-популярную литературу. Большое впечатление произвела на него идея о космическом порядке. После того как дела отца в 1895 г. пришли в упадок, семья переселилась в Милан. Эйнштейн остался в Мюнхене, но вскоре оставил гимназию, так и не получив аттестата, и присоединился к своим родным.

Шестнадцатилетнего Эйнштейна поразила та атмосфера свободы и культуры, которую он нашел в Италии. Несмотря на глубокие познания в математике и физике, приобретенные главным образом путем самообразования, и не по возрасту самостоятельное мышление, Эйнштейн не выбрал себе профессию. Отец настаивал на том, чтобы сын избрал инженерное поприще и в будущем смог поправить шаткое финансовое положение семьи. Эйнштейн попытался сдать вступительные экзамены в Федеральный технологический институт в Цюрихе, для поступления в который не требовалось свидетельства об окончании средней школы. Не обладая достаточной подготовкой, он провалился на экзаменах, но директор училища, оценив математические способности Эйнштейна, направил его в Аарау, в двадцати милях к западу от Цюриха, чтобы тот закончил там гимназию. Через год, летом 1896 г., Эйнштейн успешно выдержал вступительные экзамены в Федеральный технологический институт. В Аарау Эйнштейн расцвел, наслаждаясь тесным контактом с учителями и либеральным духом, царившим в гимназии. Все прежнее вызывало у него настолько глубокое неприятие, что он подал официальное прошение о выходе из германского подданства, на что его отец согласился весьма неохотно.

В Цюрихе Эйнштейн изучал физику, больше полагаясь на самостоятельное чтение, чем на обязательные курсы. Сначала он намеревался преподавать физику, но после окончания Федерального института в 1901 г. и получения швейцарского гражданства не смог найти постоянной работы. В 1902 г. Эйнштейн стал экспертом Швейцарского патентного бюро в Берне, в котором прослужил семь лет. Для него это были счастливые и продуктивные годы. Он опубликовал одну работу о капиллярности (о том, что может произойти с поверхностью жидкости, если ее заключить в узкую трубку). Хотя жалованья едва хватало, работа в патентном бюро не была особенно обременительной и оставляла Эйнштейну достаточно сил и времени для теоретических исследований. Его первые работы были посвящены силам взаимодействия между молекулами и приложениям статистической термодинамики. Одна из них - "Новое определение размеров молекул" ("A new Determination of Molecular Dimensions") - была принята в качестве докторской диссертации Цюрихским университетом, и в 1905 г. Эйнштейн стал доктором наук. В том же году он опубликовал небольшую серию работ, которые не только показали его силу как физика-теоретика, но и изменили лицо всей физики. Одна из этих работ была посвящена объяснению броуновского движения - хаотического зигзагообразного движения частиц, взвешенных в жидкости. Эйнштейн связал движение частиц, наблюдаемое в микроскоп, со столкновениями этих частиц с невидимыми молекулами; кроме того, он предсказал, что наблюдение броуновского движения позволяет вычислить массу и число молекул, находящихся в данном объеме. Через несколько лет это было подтверждено Жаном Перреном. Эта работа Эйнштейна имела особое значение потому, что существование молекул, считавшихся не более чем удобной абстракцией, в то время еще ставилось под сомнение.

В другой работе предлагалось объяснение фотоэлектрического эффекта - испускания электронов металлической поверхностью под действием электромагнитного излучения в ультрафиолетовом или каком-либо другом диапазоне. Филипп де Ленард высказал предположение, что свет выбивает электроны с поверхности металла. Предположил он и то, что при освещении поверхности более ярким светом электроны должны вылетать с большей скоростью. Но эксперименты показали, что прогноз Ленарда неверен. Между тем в 1900 г. Максу Планку удалось описать излучение, испускаемое горячими телами. Он принял радикальную гипотезу о том, что энергия испускается не непрерывно, а дискретными порциями, которые получили название квантов. Физический смысл квантов оставался неясным, но величина кванта равна произведению некоторого числа (постоянной Планка) и частоты излучения.

Идея Эйнштейна состояла в том, чтобы установить соответствие между фотоном (квантом электромагнитной энергии) и энергией выбитого с поверхности металла электрона. Каждый фотон выбивает один электрон. Кинетическая энергия электрона (энергия, связанная с его скоростью) равна энергии, оставшейся от энергии фотона за вычетом той ее части, которая израсходована на то, чтобы вырвать электрон из металла. Чем ярче свет, тем больше фотонов и больше число выбитых с поверхности металла электронов, но не их скорость. Более быстрые электроны можно получить, направляя на поверхность металла излучение с большей частотой, так как фотоны такого излучения содержат больше энергии. Эйнштейн выдвинул еще одну смелую гипотезу, предположив, что свет обладает двойственной природой. Как показывают проводившиеся на протяжении веков оптические эксперименты, свет может вести себя как волна, но, как свидетельствует фотоэлектрический эффект, и как поток частиц. Правильность предложенной Эйнштейном интерпретации фотоэффекта была многократно подтверждена экспериментально, причем не только для видимого света, но и для рентгеновского и гамма-излучения. В 1924 г. Луи де Бройль сделал еще один шаг в преобразовании физики, предположив, что волновыми свойствами обладает не только свет, но и материальные объекты, например электроны. Идея де Бройля также нашла экспериментальное подтверждение и заложила основы квантовой механики. Работы Эйнштейна позволили объяснить флуоресценцию, фотоионизацию и загадочные вариации удельной теплоемкости твердых тел при различных температурах.

Третья, поистине замечательная работа Эйнштейна, опубликованная все в том же 1905 г. - специальная теория относительности, революционизировавшая все области физики. В то время большинство физиков полагало, что световые волны распространяются в эфире - загадочном веществе, которое, как принято было думать, заполняет всю Вселенную. Однако обнаружить эфир экспериментально никому не удавалось. Поставленный в 1887 г. Альбертом А. Майкельсоном и Эдвардом Морли эксперимент по обнаружению различия в скорости света, распространяющегося в гипотетическом эфире вдоль и поперек направления движения Земли, дал отрицательный результат. Если бы эфир был носителем света, который распространяется по нему в виде возмущения, как звук по воздуху, то скорость эфира должна была бы прибавляться к наблюдаемой скорости света или вычитаться из нее, подобно тому как река влияет, с точки зрения стоящего на берегу наблюдателя, на скорость лодки, идущей на веслах по течению или против течения. Нет оснований утверждать, что специальная теория относительности Эйнштейна была создана непосредственно под влиянием эксперимента Майкельсона-Морли, но в основу ее были положены два универсальных допущения, делавших излишней гипотезу о существовании эфира: все законы физики одинаково применимы для любых двух наблюдателей, независимо от того, как они движутся относительно друг друга, свет всегда распространяется в свободном пространстве с одной и той же скоростью, независимо от движения его источника.

Выводы, сделанные из этих допущений, изменили представления о пространстве и времени: ни один материальный объект не может двигаться быстрее света; с точки зрения стационарного наблюдателя, размеры движущегося объекта сокращаются в направлении движения, а масса объекта возрастает, чтобы скорость света была одинаковой для движущегося и покоящегося наблюдателей, движущиеся часы должны идти медленнее. Даже понятие стационарности подлежит тщательному пересмотру. Движение или покой определяются всегда относительно некоего наблюдателя. Наблюдатель, едущий верхом на движущемся объекте, неподвижен относительно данного объекта, но может двигаться относительно какого-либо другого наблюдателя. Поскольку время становится такой же относительной переменной, как и пространственные координаты x, y и z, понятие одновременности также становится относительным. Два события, кажущихся одновременными одному наблюдателю, могут быть разделены во времени, с точки зрения другого. Из других выводов, к которым приводит специальная теория относительности, заслуживает внимание эквивалентность массы и энергии. Масса m представляет собой своего рода "замороженную" энергию E, с которой связана соотношением E = mc2, где c - скорость света. Таким образом, испускание фотонов света происходит ценой уменьшения массы источника.

Релятивистские эффекты, как правило, пренебрежимо малые при обычных скоростях, становятся значительными только при больших, характерных для атомных и субатомных частиц. Потеря массы, связанная с испусканием света, чрезвычайно мала и обычно не поддается измерению даже с помощью самых чувствительных химических весов. Однако специальная теория относительности позволила объяснить такие особенности процессов, происходящих в атомной и ядерной физике, которые до того оставались непонятными. Почти через сорок лет после создания теории относительности физики, работавшие над созданием атомной бомбы, сумели вычислить количество выделяющейся при ее взрыве энергии на основе дефекта (уменьшения) массы при расщеплении ядер урана.

После публикации статей в 1905 г. к Эйнштейну пришло академическое признание. В 1909 г. он стал адъюнкт-профессором Цюрихского университета, в следующем году профессором Немецкого университета в Праге, а в 1912 г. - цюрихского Федерального технологического института. В 1914 г. Эйнштейн был приглашен в Германию на должность профессора Берлинского университета и одновременно директора Физического института кайзера Вильгельма (ныне Институт Макса Планка). Германское подданство Эйнштейна было восстановлено, и он был избран членом Прусской академии наук. Придерживаясь пацифистских убеждений, Эйнштейн не разделял взглядов тех, кто был на стороне Германии в бурной дискуссии о ее роли в первой мировой войне.

После напряженных усилий Эйнштейну удалось в 1915 г. создать общую теорию относительности, выходившую далеко за рамки специальной теории, в которой движения должны быть равномерными, а относительные скорости постоянными. Общая теория относительности охватывала все возможные движения, в том числе и ускоренные (т.е. происходящие с переменной скоростью). Господствовавшая ранее механика, берущая начало из работ Исаака Ньютона (XVII в.), становилась частным случаем, удобным для описания движения при относительно малых скоростях. Эйнштейну пришлось заменить многие из введенных Ньютоном понятий. Такие аспекты ньютоновской механики, как, например, отождествление гравитационной и инертной масс, вызывали у него беспокойство. По Ньютону, тела притягивают друг друга, даже если их разделяют огромные расстояния, причем сила притяжения, или гравитация, распространяется мгновенно. Гравитационная масса служит мерой силы притяжения. Что же касается движения тела под действием этой силы, то оно определяется инерциальной массой тела, которая характеризует способность тела ускоряться под действием данной силы. Эйнштейна заинтересовало, почему эти две массы совпадают.

Он произвел так называемый "мысленный эксперимент". Если бы человек в свободно падающей коробке, например в лифте, уронил ключи, то они не упали бы на пол: лифт, человек и ключи падали бы с одной и той же скоростью и сохранили бы свои положения относительно друг друга. Так происходило бы в некой воображаемой точке пространства вдали от всех источников гравитации. Один из друзей Эйнштейна заметил по поводу такой ситуации, что человек в лифте не мог бы отличить, находится ли он в гравитационном поле или движется с постоянным ускорением. Эйнштейновский принцип эквивалентности, утверждающий, что гравитационные и инерциальные эффекты неотличимы, объяснил совпадение гравитационной и инертной массы в механике Ньютона. Затем Эйнштейн расширил картину, распространив ее на свет. Если луч света пересекает кабину лифта "горизонтально", в то время как лифт падает, то выходное отверстие находится на большем расстоянии от пола, чем входное, так как за то время, которое требуется лучу, чтобы пройти от стенки к стенке, кабина лифта успевает продвинуться на какое-то расстояние. Наблюдатель в лифте увидел бы, что световой луч искривился. Для Эйнштейна это означало, что в реальном мире лучи света искривляются, когда проходят на достаточно малом расстоянии от массивного тела. Общая теория относительности Эйнштейна заменила ньютоновскую теорию гравитационного притяжения тел пространственно-временным математическим описанием того, как массивные тела влияют на характеристики пространства вокруг себя. Согласно этой точке зрения, тела не притягивают друг друга, а изменяют геометрию пространства-времени, которая и определяет движение проходящих через него тел. Как однажды заметил коллега Эйнштейна, американский физик Дж. А. Уилер, "пространство говорит материи, как ей двигаться, а материя говорит пространству, как ему искривляться".

Но в тот период Эйнштейн работал не только над теорией относительности. Например, в 1916 г. он ввел в квантовую теорию понятие индуцированного излучения. В 1913 г. Нильс Бор разработал модель атома, в которой электроны вращаются вокруг центрального ядра (открытого несколькими годами ранее Эрнестом Резерфордом) по орбитам, удовлетворяющим определенным квантовым условиям. Согласно модели Бора, атом испускает излучение, когда электроны, перешедшие в результате возбуждения на более высокий уровень, возвращаются на более низкий. Разность энергии между уровнями равна энергии, поглощаемой или испускаемой фотонами. Возвращение возбужденных электронов на более низкие энергетические уровни представляет собой случайный процесс. Эйнштейн предположил, что при определенных условиях электроны в результате возбуждения могут перейти на определенный энергетический уровень, затем, подобно лавине, возвратиться на более низкий, т.е. это тот процесс, который лежит в основе действия современных лазеров.

Хотя и специальная, и общая теории относительности были слишком революционны, чтобы снискать немедленное признание, они вскоре получили ряд подтверждений. Одним из первых было объяснение прецессии орбиты Меркурия, которую не удавалось полностью понять в рамках ньютоновской механики. Во время полного солнечного затмения в 1919 г. астрономам удалось наблюдать звезду, скрытую за кромкой Солнца. Это свидетельствовало о том, что лучи света искривляются под действием гравитационного поля Солнца. Всемирная слава пришла к Эйнштейну, когда сообщения о наблюдении солнечного затмения 1919 г. облетели весь мир.

Относительность стала привычным словом. В 1920 г. Эйнштейн стал приглашенным профессором Лейденского университета. Однако в самой Германии он подвергался нападкам из-за своих антимилитаристских взглядов и революционных физических теорий, которые пришлись не ко двору определенной части его коллег, среди которых было несколько антисемитов. Работы Эйнштейна они называли "еврейской физикой", утверждая, что полученные им результаты не соответствуют высоким стандартам "арийской науки". И в 20-е гг. Эйнштейн оставался убежденным пацифистом и активно поддерживал миротворческие усилия Лиги Наций. Эйнштейн был сторонником сионизма и приложил немало усилий к созданию Еврейского университета в Иерусалиме в 1925 г.

В 1922 г. Эйнштейну была вручена Нобелевская премия по физике 1921 г. "за заслуги перед теоретической физикой, и особенно за открытие закона фотоэлектрического эффекта". "Закон Эйнштейна стал основой фотохимии так же, как закон Фарадея - основой электрохимии",- заявил на представлении нового лауреата Сванте Аррениус из Шведской королевской академии. Условившись заранее о выступлении в Японии, Эйнштейн не смог присутствовать на церемонии и свою Нобелевскую лекцию прочитал лишь через год после присуждения ему премии.

В то время как большинство физиков начало склоняться к принятию квантовой теории, Эйнштейн все более не удовлетворяли следствия, к которым она приводила. В 1927 г. он выразил свое несогласие со статистической интерпретацией квантовой механики, предложенной Бором и Максом Борном. Согласно этой интерпретации, принцип причинно-следственной связи неприменим к субатомным явлениям. Эйнштейн был глубоко убежден, что статистика является не более чем средством и что фундаментальная физическая теория не может быть статистической по своему характеру. По словам Эйнштейна, "Бог не играет в кости" со Вселенной. В то время как сторонники статистической интерпретации квантовой механики отвергали физические модели ненаблюдаемых явлений, Эйнштейн считал теорию неполной, если она не может дать нам "реальное состояние физической системы, нечто объективно существующее и допускающее (по крайней мере в принципе) описание в физических терминах". До конца жизни он стремился построить единую теорию поля, которая могла бы выводить квантовые явления из релятивистского описания природы. Осуществить эти замыслы Эйнштейну так и не удалось. Он неоднократно вступал в дискуссии с Бором по поводу квантовой механики, но они лишь укрепляли позицию Бора.

Когда в 1933 г. Гитлер пришел к власти, Эйнштейн находился за пределами Германии, куда он так и не вернулся. Эйнштейн стал профессором физики в новом Институте фундаментальных исследований, который был создан в Принстоне (штат Нью-Джерси). В 1940 г. он получил американское гражданство. В годы, предшествующие второй мировой войне, Э. пересмотрел свои пацифистские взгляды, чувствуя, что только военная сила способна остановить нацистскую Германию. Он пришел к выводу, что для "защиты законности и человеческого достоинства" придется "вступить в битву" с фашистами. В 1939 г. по настоянию нескольких физиков-эмигрантов Эйнштейн обратился с письмом к президенту Франклину Д.Рузвельту, в котором писал о том, что в Германии, по всей вероятности, ведутся работы по созданию атомной бомбы. Он указывал на необходимость поддержки со стороны правительства США исследований по расщеплению урана. В последующем развитии событий, которые привели к взрыву 16 июля 1945 г. первой в мире атомной бомбы в Аламогордо (штат Нью-Мексико), Эйнштейн участия не принимал.

После второй мировой войны, потрясенный ужасающими последствиями использования атомной бомбы против Японии и все ускоряющейся гонкой вооружений, Эйнштейн стал горячим сторонником мира, считая, что в современных условиях война представляла бы угрозу самому существованию человечества. Незадолго до смерти он поставил свою подпись под воззванием

Бертрана Рассела, обращенным к правительствам всех стран, предупреждающим их об опасности применения водородной бомбы и призывающим к запрету ядерного оружия. Эйнштейн выступал за свободный обмен идеями и ответственное использование науки на благо человечества.

Первой женой Эйнштейна была Милева Марич, его соученица по Федеральному технологическому институту в Цюрихе. Они поженились в 1903 г., несмотря на жестокое противодействие его родителей. От этого брака у Эйнштейна было два сына. После пятилетнего разрыва супруги в 1919 г. развелись. В том же году Эйнштейн вступил в брак со своей двоюродной сестрой Эльзой, вдовой с двумя детьми. Эльза Эйнштейн скончалась в 1936 г. В часы досуга Эйнштейн любил музицировать. Он начал учиться игре на скрипке, когда ему исполнилось шесть лет, и продолжал играть всю жизнь, иногда в ансамбле с другими физиками, например с Максом Планком, бывшим великолепным пианистом. Нравились ему и прогулки на яхте. Эйнштейн считал, что парусный спорт необычайно способствует размышлениям над физическими проблемами. В Принстоне он стал местной достопримечательностью. Его знали как физика с мировым именем, но для всех он был добрым, скромным, приветливым и несколько эксцентричным человеком, с которым можно столкнуться прямо на улице. Эйнштейн скончался в Принстоне от аневризмы аорты.

Самый знаменитый из ученых XX в. и один из величайших ученых всех времен, Эйнштейн обогатил физику с присущей только ему силой прозрения и непревзойденной игрой воображения. С детских лет он воспринимал мир как гармоническое познаваемое целое, "стоящее перед нами наподобие великой и вечной загадки". По его собственному признанию, он верил в "Бога Спинозы, являющего себя в гармонии всего сущего". Именно это "космическое религиозное чувство" побуждало Эйнштейна к поиску объяснения природы с помощью системы уравнений, которая обладала бы большой красотой и простотой. Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952 г. Э. отказался. Помимо Нобелевской премии, он был удостоен многих других наград, в том числе медали Копли Лондонского королевского общества (1925) и медали Франклина Франклиновского института (1935). Эйнштейн был почетным доктором многих университетов и членом ведущих академий наук мира.

Некоторые изобретения Эйнштейна

Магнитострикционный громкоговоритель

10 января 1934 года Германское патентное ведомство по заявке, поданной 25 апреля 1929 года, выдало патент № 590783 на «Устройство, в частности, для звуковоспроизводящей системы, в котором изменения электрического тока вследствие магнитострикции вызывают движение магнитного тела». Авторы изобретения — Рудольф Гольдшмидт и Альберт Эйнштейн. Магнитострикцией называют изменение размеров магнитных тел (обычно ферромагнетиков) при намагничивании. В преамбуле к патентному описанию изобретатели пишут, что силам магнитного сжатия препятствует жесткость ферромагнетика, и предлагают три способа увеличения перемещения под действием этой силы.

Первый способ показан на рис. 1 a. Несущий иглу С с диффузором ферромагнитный стержень В ввинчен в прочное U-образное магнитное ярмо А таким образом, что сжимающие стержень осевые усилия очень близки к критической величине, при которой имеют место эйлеровская потеря устойчивости и изгиб стержня. На ярмо надеты обмотки D, по которым проходит электрический ток, модулированный звуковым сигналом. Чем сильнее звук, тем сильнее намагничивание и сжатие стержня В. Поскольку стержень поставлен на грань неустойчивости, малые вариации длины приводят к сильным колебаниям в вертикальном направлении, и прикрепленный к середине стержня диффузор генерирует звук. Во втором варианте (рис. 1 б) используется неустойчивость системы из сжатой пружины Н и штока G, упирающегося острием в лунку S. Модулированный звуковым сигналом ток проходит по обмотке D. Переменная во времени намагниченность железного стержня приводит к небольшим колебаниям его длины, которые усиливаются за счет энергии теряющей устойчивость сильной пружины. В третьем варианте магнитострикционного громкоговорителя (рис. 1 в) применена схема с двумя железными стержнями B1 и B2, обмотки D которых подключены таким образом, что, когда намагниченность одного стержня увеличивается, намагниченность другого уменьшается. Тягами C1 и С2 стержни соединены с коромыслом G, подвешенным на штанге М и прикрепленным растяжками F к боковинам магнитного ярма А. Коромысло жестко связано с диффузором W. Завинчивая гайку Р на штанге М, систему переводят в состояние неустойчивого равновесия. Благодаря противофазному намагничиванию стержней B1 и B2 током звуковой частоты их деформации также совершаются в противофазе — один сжимается, другой удлиняется, и коромысло в соответствии со звуковым сигналом поворачивается относительно точки R. В этом случае также за счет использования скрытой неустойчивости происходит усиление амплитуды магнитострикционных колебаний.

Автоматическая фотокамера

Эйнштейн придумал несколько технических устройств, в том числе чувствительный электрометр и прибор, определяющий время экспозиции при фотосъемке. Теперь такое устройство называется фотоэкспонометром. Может быть, это изобретение было побочным продуктом размышлений, завершившихся созданием представления о световых квантах и объяснением фотоэффекта. Интерес к устройствам подобного рода сохранился у Эйнштейна надолго, хотя фотолюбителем он не был. Во второй половине 40-х годов Эйнштейн и Букки изобрели механизм для автоматической регулировки времени экспозиции в зависимости от освещенности. Устройство показано на рис. 2, где а, в — камера, б — сегмент переменной прозрачности. 27 октября 1936 года они получили американский патент № 2058562 на фотокамеру, автоматически подстраивающуюся под уровень освещенности. В ее передней стенке 1, помимо объектива 2, имеется еще окно 3, через которое свет попадает на фотоэлемент 4. Электрический ток, вырабатываемый фотоэлементом, поворачивает находящийся между линзами объектива легкий кольцевой сегмент 5, зачерненный так, что прозрачность его плавно изменяется от максимальной на одном конце до минимальной на другом (рис. 2 б). Поворот сегмента тем больше, а, следовательно, затемнение объектива тем сильнее, чем ярче освещен объект. Таким образом, будучи раз отъюстированным, устройство при любой освещенности само регулирует количество света, падающего на фотопленку или пластинку, находящуюся в фокальной плоскости объектива 2. Но что делать, если фотографу захочется изменить диафрагму? Для этого изобретатели предлагают несколько усложненный вариант своей фотокамеры. В этом варианте на ее передней стенке 1 устанавливается поворотный диск 6 с набором отверстий 7-12 нескольких диаметров. При поворотах диска одно из таких отверстий приходится на объектив, а диаметрально противоположное — на окно фотоэлемента. Поворачивая диск за рычажок 13 на фиксированные углы, фотограф одновременно диафрагмирует и объектив и окно. Экспонометр Букки—Эйнштейна одно время был весьма популярен, его даже использовали кинооператоры в Голливуде. Заметим, что попутно здесь предложен тот самый принцип обратной связи, который лег в основу кибернетики, но до выхода основополагающей книги Норберта Винера оставалось еще 12 лет.

Гирокомпасы и индукционная электромагнитная подвеска

В 1926 году фирмой Аншютца был разработан и запущен в серийное производство весьма сложный и совершенный гироскопический прибор — прецизионный гирокомпас. В статьях и книгах по гирокомпасам непременно отмечается, что в разработке принял участие Эйнштейн. Этот гироскопический прибор двухроторный — в нем механически связаны взаимно перпендикулярные оси двух вращающихся со скоростью 20 000 об./мин роторов, по 2,3 кг каждый. Они являются также роторами трехфазных асинхронных двигателей переменного тока. Оба гироскопа (ротора) помещены внутрь полой герметичной сферы. При слове «гироскоп» большинство вспоминает устройство с ротором, ось которого закреплена в кольцах карданова подвеса. Конечно, карданов подвес, обеспечивающий ротору полную свободу поворотов вокруг трех взаимно перпендикулярных осей, — находка необычайно остроумная (рис. 3). Но для мореходного гирокомпаса такой подвес не годится: компас должен месяцами указывать строго на север, не сбиваться ни при штормах, ни при ускорениях и переменах курса судна. С течением времени ось ротора будет поворачиваться, или, как говорят моряки, «уходить». В новом гироскопе кардановых колец нет — сфepa диаметром 25 см с двумя гироскопами (двухгироскопная система в отношении качки несравненно устойчивее одногироскопной) свободно плавает в жидкости, снаружи она не касается никаких подпорок или стенок. К ней даже не подходят электрические провода, которые способны передавать какие-то механические усилия и моменты. У сферы имеются выполненные из электропроводного материала «полярные шапки» и «экваториальный пояс». Против этих электродов в жидкости находятся электроды, к которым подключены фазы электропитания. Жидкость, в которой плавает сфера, — это вода, в которую добавлено немного глицерина для придания ей антифризных свойств и кислоты — для электропроводности. Таким образом, трехфазный ток подается в гиросферу прямо через поддерживающую ее жидкость, а затем уже внутри по проводам разводится к статорным обмоткам гироскопных двигателей.

Для плавания в поддерживающей жидкости в полностью погруженном и безразличном состоянии должен соблюдаться совершенно точный баланс между ее весом и весом вытесненного раствора. Соблюсти такой баланс очень нелегко, но, даже если он и достигнут, неизбежные в этом случае температурные колебания и изменения удельных весов его нарушат. Кроме того, необходимо еще как-то центрировать гиросферу в горизонтальном направлении. Эйнштейн придумал, как осуществить центровку гиросферы в вертикальном и горизонтальном направлениях. Вблизи дна внутрь гиросферы помещается кольцевая обмотка, подключаемая к одной из фаз поданного в шар переменного тока, сама же гиросфера окружается еще одной полой металлической сферой (рис. 4). Создаваемое внутренней обмоткой гиросферы переменное магнитное поле наводит в окружающей ее, например алюминиевой, сфере вихревые токи. Согласно закону Ленца, эти токи стремятся воспрепятствовать изменению магнитного потока, которое произошло бы при любом смещении внутренней сферы относительно внешней. При этом происходит автоматическая стабилизация гиросферы. Если она, например, в результате повышения температуры стала тонуть (ведь удельный вес жидкости при нагревании вследствие ее расширения уменьшается), зазор между донными частями сфер сократится, отталкивающие силы возрастут и остановят движение. Аналогично стабилизируется гиросфера и в горизонтальном направлении.

В различных отраслях современной техники все более широкое применение находят сейчас исключающие трение и касание способы подвески, при которых подвешиваемый объект парит, или, как теперь часто говорят, левитирует. Существуют магнитная, электростатическая, сверхпроводящая магнитная и, наконец, индукционная электромагнитная подвеска, которую предложил Эйнштейн. Например, она применяется при бестигельной плавке металлов и полупроводников.

Эйнштейн: анекдоты и тайны гения

Альберт Эйнштейн был одним из тех ученых, личность которых, может быть, даже превосходит сделанные открытия. Он просто не дал возможности потомкам узнать всех его открытий. "Человек столетия" Альберт Эйнштейн скончался 18 апреля 1955 года.

Журнал Time, подводя итоги двадцатого века, выбрал трех человек, оказавших самое большое влияние на развитие человечества - Альберт Эйнштейн стал первым из них. Другими кандидатурами на это звание были президент США Франклин Делано Рузвельт и индийский философ, общественный деятель и приверженец теории ненасилия Махатма Ганди.

В газете “Дуэль” № 32 за 1997 год опубликован список из журнала “Эхо планеты” (декабрь 1994) - статья “Сто великих евреев”. В этом списке на первом месте - Моисей, выведший евреев из Египта, на втором - Иисус Христос, преданный евреями и распятый, на третьем (видимо новый Спаситель) - Эйнштейн, на четвертом - Фрейд и только на пятом - Авраам, родоначальник евреев, отмечает в своей работе о великом ученом исследователь В.И. Бояринцев.

Над открытием теории относительности специалисты не устают спорить до сих пор. Кто-то пытается доказать ее несостоятельность, есть даже те, кто попросту считают, что "нельзя увидеть во сне решение такой серьезной проблемы". Как на самом деле Эйнштейн открыл теорию относительности- всегда останется загадкой, потомкам остается лишь предполагать…

Этот человек создал загадку даже из своей смерти - его похоронили тайно, по легенде, вместе с ним закопав пепел его работ, которые он сжег перед кончиной. Эйнштейн считал, что они могут навредить человечеству. Исследователи считают, что секрет, который унес с собой Эйнштейн, действительно мог перевернуть мир. Речь не идет о бомбе - по сравнению с последними разработками ученого даже она показалась бы детской игрушкой.

Единая теория поля стала центром внимания ученого в последние годы жизни. Как пишут специалисты, "главным образом, ее действие заключается в том, чтобы с помощью одного единственного уравнения описать взаимодействие трех фундаментальных сил: электромагнитных, гравитационных и ядерных". Специалисты полагают, что Эйнштейн мог совершить феноменальное открытие, но, предвидев возможность его использования, предпочел уничтожить труд.

В одной из статей, посвященных исследованию загадки Эйнштейна, приводятся слова некоторых историков, рассказывающих о возможном открытии: "…Возникла идея создать электромагнитное поле такой напряженности, при которой световые лучи свернутся в кокон, делающий объект невидимым как для человека, так и для приборов. Эйнштейну, как сильнейшему теоретику в этой области, поручили сделать расчеты. Далее последовали события, ставшие одной из самых интересных загадок ХХ века. В 1943 году в Филадельфии случилась таинственная история, связанная с эсминцем "Элдридж". Корабль, на котором, согласно существующей версии, были установлены "генераторы невидимости", не просто исчез из поля зрения наблюдателей и экранов радаров, а будто бы провалился в иное измерение и возник лишь через некоторое время с полубезумным экипажем на борту. Но, главное, пожалуй, даже не в исчезновении корабля, а в загадочных последствиях, которые эксперимент оказал на экипаж эсминца. С моряками стали происходить невероятные вещи: одни как бы "замерзали" - выпадали из реального хода времени, другие вовсе "растворялись" в воздухе, чтобы уже никогда не появиться вновь...".

Кстати, сейчас существуют предположения, что какие-то идеи и наброски ученого все-таки были использованы Пентагоном для разработки малозаметных кораблей и самолетов.

Гением быть сложно, хотя бы потому, что современники ловят и записывают каждую сказанную фразу, которая рискует превратиться в анекдот - Эйнштейн не избежал этой участи:

"Однажды, зайдя в берлинский трамвай, Эйнштейн по привычке углубился в чтение. Потом, не глядя на кондуктора, вынул из кармана заранее отсчитанные на билет деньги.

Здесь не хватает, - сказал кондуктор.
- Не может быть, - ответил ученый, не отрываясь от книжки.
- А я вам говорю - не хватает.
Эйнштейн еще раз покачал головой, дескать, такого не может быть. Кондуктор возмутился:
- Тогда считайте, вот - 15 пфеннигов. Так что не хватает еще пяти.
Эйнштейн пошарил рукой в кармане и действительно нашел нужную монету. Ему стало неловко, но кондуктор, улыбаясь, сказал:
- Ничего, дедушка, просто нужно выучить арифметику."

"Эйнштейн обожал фильмы Чарли Чаплина, и с большой симпатией относился как к нему, так и к его трогательным персонажам. Однажды он послал Чаплину телеграмму: "Ваш фильм "Золотая лихорадка" понятен всем в мире, и я уверен, что Вы станете великим человеком. Эйнштейн".
Чаплин ответил: "Я вами восхищаюсь ещё больше. Вашу теорию относительности не понимает никто в мире, но Вы всё-таки стали великим человеком. Чаплин".

"Едут в поезде два одессита. Вместе с ними седой, взъерошенный старик. Выходит он куда-то, один его сосед спрашивает другого:
- А это кто.
- Ты чего, это ж Альберт Эйнштейн.
- Ну и что?
- Так он же нобелевский лауреат, теорию относительности изобрел.
- А это что такое?
- Ну, предположим, два волоса на голове, это много?
- Нет.
- А в супе?
- Ну, в супе...
- Вот, все относительно.Помолчал-помолчал мужик и выдает:
- И с этим приколом он собрался в Одессу?".

Без сомнения, Альберт Эйнштейн - один из самых великих ученых за всю историю человечества. Но, как нередко случается, история искажает факты, а некоторые просто стираются из памяти. В очередной раз изучая биографию Эйнштейна, удалось обнаружить некоторую информацию о великом физике, которая и сейчас способна удивить.

Оспаривание авторства теории относительности

Когда великий физик открыл теорию относительности, его авторские права подвергались сомнению. Факты, подтверждающие это, были достаточно серьезными, хоть и не широко известными.

Обвинение шло со стороны Дэвида Гильберта и его сторонников. Гильберт считал, что он первым подошел к открытию теории, а Эйнштейн использовал его наработки и не оставил ни одной ссылки на истинного автора. Сам Эйнштейн ответил, что его ранние работы были скопированы Гильбертом, чем опроверг обвинения.

Когда стали разбираться в ситуации, решили, что двое ученых работали по отдельности, но Гильберт подал свою работу раньше Эйнштейна. Когда же историки стали разбираться в проблеме дальше, они выяснили, что это некоторые наработки Эйнштейна были позаимствованы его коллегой. При этом имя Эйнштейна ни разу не было упомянуто.

Историки предполагают, что доказательствам Гильберта недоставало данных для получения правильного решения. К моменту публикации ученому удалось откорректировать ошибки. И хотя работа Эйнштейна была издана гораздо раньше, Гильберт противопоставил ей собственный труд.

Известный физик был хорошим учеником

Многие верят, что Эйнштейн учился плохо. Однако это не так. Еще во время обучения в школе он замечательно знал математику. Математический анализ Эйнштейн выучил еще в 12 лет, а через три года сочинил эссе, которое в будущем стало базой для разработки теории относительности.

Слухи о плохих отметках ученого пошли из-за различной классификации оценок в школах Германии и Швейцарии. Оценки выставлялись от 1 до 6, где 6 сначала была плохой оценкой, а потом система оказалась перевернутой и 6 стала высшим баллом. Единица при этом вместо самого высокого балла получилась самым низким.

А вот в швейцарскую Федеральную политехническую школу Эйнштейн поступить не смог. Оттуда и пошли слухи о плохой учебе великого гения. Будущий ученый смог отлично сдать такие научные предметы, как физика и математика, но за экзамены по общественным, в частности по французскому языку, он получил низкие оценки.

Изобретения Эйнштейна

Физику удалось создать холодильник, для работы которого не нужно электричество. Авторство принадлежит самому ученому, а также его коллеге и другу Лео Сциларду.

Охлаждение продуктов проходило благодаря процессу абсорбции. В ходе изменения давления между газами и жидкостями, который применял ученый в своей разработке, происходит понижение температуры в холодильной камере.

Создать такое устройство ученый решился, узнав о несчастном случае с одной немецкой семьей. У привычного холодильника произошла утечка токсичных газов, которыми отравилась целая семья. В то время случались такие проблемы, как дефекты пломбы. И тогда ядовитые вещества, двуокись серы и хлористый метил, вытекали наружу.

В числе изобретений Эйнштейна - насос и блузка. При этом на блузе располагалось два ряда застежек. Первый ряд предназначался для человека худого телосложения, а второй - для более полных людей. Очень экономная вещь, позволяющая в случае потери веса или, наоборот, сильной прибавки просто переходить с одного ряда застежек на другой, не меняя саму вещь.

Диктаторский режим из-за поправок в Конституцию США

Во время Второй мировой войны многие светила науки и культуры сбегали в США. В их числе был и Курт Гедель. Однако ему было весьма нелегко получить гражданство в этой стране. Когда наступила его очередь проходить собеседование для получения статуса гражданина Америки, Курт Гедель должен был прийти в сопровождении двух человек, берущих на себя ответственность поручиться за него. Тогда он позвал своих друзей - Оскара Моргенштерна и Эйнштейна.

Собеседование проводил Филипп Форман, также являющийся другом Эйнштейна, однако такое совпадение случайно. Гедель достаточно долго готовился, чтобы наконец получить гражданство. Во время собеседования Форман заявил, что США прежде не были и никогда не будут диктаторской страной. Гедель же, наоборот, возразил, заявив, что в США легко реализовать диктатору благодаря лазейке в Конституции. Ученый хотел пояснить, что же это за лазейка, но Эйнштейн не дал другу высказаться, иначе это могло бы препятствовать его дальнейшей благополучной судьбе в Америке. Судья закончил собеседование, и Гедель получил статус гражданина Америки.

Об этой ситуации стало известно из дневника Моргенштерна. Однако там не указывалось подробностей. До сих пор наверняка никому не известно, о чем говорил Гедель. Сейчас предполагают, то речь тогда шла о Статье 5, позволяющей вносить изменения. Получается, что всего несколько поправок - и юридически можно уничтожить Конституцию.

ФБР вело слежку за Эйнштейном, обвиняя его в шпионаже для СССР

С 1933 по 1955, как только Эйнштейн приехал в Америку, и до самой его смерти, ученый подвергался постоянному наблюдению ФБР. Его телефон прослушивался, а письма нередко попадали в руки следователей. Бюро даже обыскивало мусор ученого, пытаясь найти какие-либо доказательства подозрительной деятельности. Больше всего подозревали ученого в шпионстве на Советский Союз.

ФБР также подключали иммиграционную службу, чтобы найти повод и депортировать Эйнштейна. Причиной такого отношения служили его пацифистские взгляды и правозащитная позиция. Все это делало его антиправительственным радикалом и давало повод для подозрений.

Женская патриотическая корпорация еще до приезда известного физика в Штаты направляла в правительство письмо, выражая протест против прибытия ученого. Женская партия написала там, что даже Сталин не такой коммунист, как Эйнштейн.

Прежде чем получить визу, ученого долго расспрашивали на предмет его политических приоритетов. Тогда Эйнштейн несдержанно высказался, что народ Америки умолял его о приезде, и он не должен терпеть подобное отношение к себе. Ученый всегда знал, что за ним наблюдают. Как-то он признался послу из Польши, что их беседа была записана.

Эйнштейн жалел, что причастен к созданию атомного оружия

Ученые, занятые в Манхэттенском проекте, который позволил Америке создать ядерное оружие, никогда не связывались с Эйнштейном. Им не позволяли общаться с ним, а сам Эйнштейн, даже изъявив вдруг желание, также не получил бы разрешение.

Однако Эйнштейн вместе с физиком Лео Сцилардом отправил письмо американскому президенту Рузвельту, выражая просьбу создать атомное оружие. Эйнштейн сделал это, узнав, что немцы расщепили атом урана. Физик опасался, что Германия создаст подобное оружие первой.

Когда же США первыми не только разработали, но и сбросили атомную бомбу. Эйнштейн заявил, что не стал бы подписывать то письмо, зная, какие последствия оно будет иметь.

Сын Эйнштейна - Эдуард

Эйнштейн и его жена Милева Марич имели нескольких детей. Второй их сын - Эдуард. Он родился в 1910 году. Его также называли «Тете», или «Тетель». Ребенком он много болел. В 20 лет ему был поставлен диагноз «шизофрения». Милева разошлась с Эйнштейном в 1919 году, и первое время Эдуард оставался с ней. Но вскоре его направили в психиатрическую больницу.

Сам ученый не удивился такому диагнозу. Сестра Милевы болела шизофренией, и Эйнштейн нередко замечал у Тете схожие признаки болезни.

В Америке Эйнштейн оказался через год после того, как его сын попал в лечебницу. И хотя в Европе ученый часто навещал детей, но из Америки Эйнштейн больше не приезжал к сыновьям. Эдуарду он писал редко. Но все его письма всегда оставались душевными. Накануне Второй мировой войны ученый писал, что хотел бы встретиться с ним весной. Но война помешала, и они уже больше смогли увидеться.

Милева умерла в 1948 году. Тете продолжал жить в госпитале, какое-то время он провел в приемной семье, но после ему пришлось вернуться в больницу. Эдуард умер в 1965 году.

Эйнштейн курил, не переставая

Общеизвестный факт, что ничего сильнее, чем свою скрипку и трубку, Эйнштейн не любил. За свое пристрастие к курению он получил пожизненное членство в Монреальском клубе курильщиков трубок. Ученый считал курение своим самым лучшим средство успокоения. Он также отмечал, что это позволяет ему объективно мыслить.

Лечащий врач настойчиво посоветовал Эйнштейну бросить курение, в ответ на что ученый закурил трубку. Даже когда Эйнштейн упал с лодки во время одной из поездок, он защитил от воды любимую трубку.

Рукописи, письма и трубка оставались теми немногими личными вещами, которые находились в пользовании физика.

Физик обожал женщин

В моменты, когда ученый не занимался работой или курением, он увлекался женщинами. Это видно по его письмам. И, может, не столько сам ученый был привязан к женщинами, сколько они любили его.

Ханох Гутфройнд, изучавший жизнь Эйнштейна и являющийся председателем Всемирной выставки в Еврейском университете, описывал его жизнь со второй женой - Эльзой. Не так давно были изданы все письма физика, которые, по мнению Ханоха Гутфройнда, представляют его как не самого худшего мужа и отца.

Однако он признал, что быть верным жене не может. В письмах он откровенно рассказывал обо всех своих женщинах, тем не менее отмечая их интерес как нежелательный. За время брака у него их было по меньшей мере шесть.

Самая большая ошибка Эйнштейна

Гениальный физик за время своей научной деятельности допустил как минимум семь ошибок в работах.

В 1917 году Эйнштейн признал свою наибольшую ошибку. В теории относительности он поставил космологическую постоянную — символ лямбда. Это позволяло рассматривать Вселенную стабильной, как ранее считалось среди ученых того времени. Лямбда - это сила, способная противодействовать силе притяжения. Когда же физик обнаружил, что Вселенная все же расширяется, он убрал символ. Но в 2010 году исследователи пришли к выводу, что физик был прав в своем первоначальном варианте. Лямбда - это та теоритическая «темная энергия», которая противостоит гравитации и под влиянием которой Вселенная расширяется в ускоренном темпе.

По материалам: hi-news.ru